Exam Seat No: \qquad

Enrollment No:

 C.U.SHAH UNIVERSITY

 C.U.SHAH UNIVERSITY

 Wadhwan City

 Wadhwan City}
\qquad

Subject Code 4TE02EMT1

Subject Name: Engineering Mathematics-II
Summer Examination-2014
Date: 26/05/2014

Branch/Semester:- B.Tech/II
Time:02:00 To 5:00
Examination: Regular

Instructions:-

(1) Attempt all Questions of both sections in same answer book / Supplementary
(2) Use of Programmable calculator \& any other electronic instrument is prohibited.
(3) Instructions written on main answer Book are strictly to be obeyed.
(4)Draw neat diagrams \& figures (If necessary) at right places
(5) Assume suitable \& Perfect data if needed

SECTION - I

Q-1 (a) Find the determinant of the matrix A, Where $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7\end{array}\right]$
(b) Evaluate: $\int_{-\pi / 2}^{\pi / 2} \sin ^{6} x d x$
(c) Define : Symmetric matrix and Hermitian matrix with suitable examples.
(d) Find the order and degree of the differential equation $\left(\frac{d^{3} y}{d x^{3}}\right)^{3}+\left(\frac{d^{2} y}{d x^{2}}\right)^{4}+y=0$

Q-2 (a) (i) Find the differential equation of all circles of radius r whose centers lie on the x -axis.
(ii) Solve : $\frac{d y}{d x}+\frac{1}{x}=\frac{e^{y}}{x^{2}}$
(b) Evaluate $: \int_{2}^{\infty} \frac{x+3}{(x-1)\left(x^{2}+1\right)} d x$
(c) Solve the following system of equations by Cramer's Rule.
$-\frac{1}{x}+\frac{3}{y}+\frac{4}{z}=30, \frac{3}{x}+\frac{2}{y}-\frac{1}{z}=9, \frac{2}{x}-\frac{1}{y}+\frac{2}{z}=10$

OR

Q-2 (a) (i) Solve : $x d x+y d y+y^{2} d x=0$
(ii) Evaluate $: \int_{0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{\frac{7}{2}}} d x$
(b) Find the volume of solid of revolution, obtained by rotating the area bounded below the line $2 x+3 y=6$ in the first quadrant, about the x-axis.
(c) Find the matrix A, if $A^{-1}=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$

Q-3 (a) (i) Find the rank of the following matrix by row-echelon form.

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \\
-2 & -1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right]
$$

(ii) Discuss the consistency of the system and if consistent then solve the equation by Gauss-Elimination method.

$$
\begin{equation*}
4 x-2 y+6 z=8, x+y-3 z=-1,15 x-3 y+9 z=21 \tag{04}
\end{equation*}
$$

(b) Find the Eigenvalues \& eigenvectors of the given matrix A. And also find algebraic multiplicity and geometric multiplicity of it. Where $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$

OR

Q-3 (a) (i) Obtain Row echelon \& Reduced row echelon form of the following matrix:

$$
A=\left[\begin{array}{cccc}
0 & -1 & 2 & 3 \tag{03}\\
2 & 3 & 4 & 5 \\
1 & 3 & -1 & 2 \\
3 & 2 & 4 & 1
\end{array}\right]
$$

(ii) Solve the system of equations :

$$
\begin{align*}
& 2 x_{1}-x_{2}+3 x_{3}=0 \tag{04}\\
& 3 x_{1}+2 x_{2}+x_{3}=0 \\
& x_{1}-4 x_{2}+5 x_{3}=0
\end{align*}
$$

(b) Find the characteristic roots of the matrix Aand verify Cayley-Hamilton theorem a linear polynomial in A. Where $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$

SECTION - II

Q-4 (a) State the Cayley-Hamilton Theorem.
(b) Evaluate $: \int_{0}^{1} \int_{0}^{x} e^{x} d x d y$
(c) Prove that $\nabla r^{2}=2 \bar{r}$
(d) Find the eigenvalue of A and A^{7}, Where $A=\left[\begin{array}{ccc}-1 & 1 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & -3\end{array}\right]$

Q-5 (a) (i) Find the constants a, b, c if $\bar{F}=\left(a x y+b z^{3}\right) i+\left(3 x^{2}-c z\right) j+\left(3 x z^{2}-y\right) k$ is irrotational.
(ii) Find the directional derivative of $\phi=e^{2 x} \cos y z$ at the origin in the direction of the tangent to the curve $x=a \sin t y \operatorname{ycos} t, z=a t$ at $t=\frac{\pi}{4}$.
(b) Evaluate : $\int_{C}\left[\left(x^{2}-\cosh x\right) d x+\left(\begin{array}{c}y \\ y \\ 0 \\ 0\end{array} \sin x\right) d y\right.$ by Green's theorem. Where C is the rectangle with vertices $(0,0),(\pi, 0),(\pi, 1)$ and $(0,1)$.
(c) Evaluate $\iint x y(x+y) d x d y$ over the region bounded by the parabolas $y^{2}=x, x^{2}=y$

OR

Q-5 (a) (i) Find the constant a if $\bar{F}=\left(x+3 y^{2}\right) i+\left(2 y+2 z^{2}\right) j+\left(x^{2}+a z\right) k$ is solenoidal.
(ii) Evaluate $: \int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{d x d y}{1+x^{2}+y^{2}}$
(b) Evaluate $\int_{C} \bar{F} \cdot d \bar{r}$, where $\bar{F}=\left(2 x+y^{2}\right) i+(3 y-4 x) j$ and C is the triangle in the $x y$ plane with vertices $(0,0),(2,0)$ and $(2,1)$.
(c) Change the order of integration and evaluate $\int_{0}^{\infty} \int_{0}^{x} x e^{-\frac{x^{2}}{y}} d y d x$.

Q-6 (a) (i) Express the following matrix as the sum of a symmetric matrix and a skew
symmetric matrix: $A=\left[\begin{array}{ccc}3 & -2 & 6 \\ 2 & 7 & -1 \\ 5 & 4 & 0\end{array}\right]$
(ii) Investigate for what values of λ and μ have (a) no solution, (b) a unique
solution and (c) infinitely many solutions.

$$
\begin{aligned}
& x+2 y+z=8 \\
& 2 x+2 y+2 z=13 \\
& 3 x+4 y+\lambda z=\mu
\end{aligned}
$$

(b) Find a matrix that diagonalizable and determine $P^{-1} A P$, where $A=\left[\begin{array}{ccc}1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3\end{array}\right]$

OR

Q-6 (a) (i) Prove that matrix A is unitary matrix and hence find A^{-1},

$$
\text { where } A=\left[\begin{array}{cc}
\frac{1+i}{2} & \frac{-1+i}{2} \\
\frac{1+i}{2} & \frac{1-i}{2}
\end{array}\right]
$$

(ii) Find the inverse of the following matrix by elementary transformation:

$$
\left.\begin{array}{c}
A=\left[\begin{array}{cccc}
1 & -1 & 0 & 2 \\
0 & 1 & 1 & -1 \\
2 & 1 & 2 & 1 \\
3 & -2 & 1 & 6
\end{array}\right] \tag{04}\\
6
\end{array}\right]
$$

