Exam Seat No: Enrollment No:				
	C.U	J.SHAH UNIVERSITY Wadhwan City		
Subject Code	4TE02EMT1	Summer Examination-2014	Date: 26/05/2014	
Subject Name	e: Engineering Mathematics-II	Summer Examination-2014	Time:02:00 To 5:00	
Branch/Seme Examination	ester:- B.Tech/II : Regular			
(2) Use of Pre(3) Instruction(4) Draw neat	ll Questions of both sections in sar	r electronic instrument is prohibited. e strictly to be obeyed.		
		SECTION - I		
Q-1 (a)	Find the determinant of T_{π}	the matrix A, Where $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 5 \end{bmatrix}$	3 4 7	[01]
(b)	Evaluate: $\int_{-\pi/2}^{\pi/2} \sin^6 x \ dx$	· · · · ·		[02]
(c)	Define : Symmetric mat	rix and Hermitian matrix with s	uitable examples.	[02]
(d)	Find the order and degre	e of the differential equation	$\left(\frac{d^3y}{dx^3}\right)^3 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0$	[02]
Q-2 (a)	(i) Find the differential of x-axis.	equation of all circles of radius	r whose centers lie on the	[02]
	(ii) Solve: $\frac{dy}{dx} + \frac{1}{x} = \frac{e^y}{x^2}$ Evaluate: $\int_{2}^{\infty} \frac{x+3}{(x-1)(x^2+1)}$			[03]
(b)	Evaluate : $\int_{2}^{\infty} \frac{x+3}{(x-1)(x^2+1)}$	$\frac{1}{1}dx$		[05]
(c)	Solve the following syste	em of equations by Cramer's R $\frac{2}{y} - \frac{1}{z} = 9$, $\frac{2}{x} - \frac{1}{y} + \frac{2}{z} = 10$	ule.	[04]
		OR		
Q-2 (a)	(i) Solve : $x dx + y dy + y dy$			[02]
	(ii) Evaluate : $\int_{0}^{\infty} \frac{x^2}{(1+x^2)^{\frac{7}{2}}}$	dx		[03]
		Page 1 of 4		
				26

- (b) Find the volume of solid of revolution, obtained by rotating the area bounded below [05] the line 2x+3y = 6 in the first quadrant, about the *x*-axis.
- (c) Find the matrix A, if $A^{-1} = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ [04]

Q-3 (a) (i) Find the rank of the following matrix by row-echelon form. [03]
$$A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ -2 & -1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$

(ii) Discuss the consistency of the system and if consistent then solve the equation by Gauss-Elimination method. 4x-2y+6z=8, x+y-3z=-1, 15x-3y+9z=21 [04]

(b) Find the Eigenvalues & eigenvectors of the given matrix A. And also find algebraic $\begin{bmatrix} -2 & 2 & -3 \end{bmatrix}$

multiplicity and geometric multiplicity of it. Where
$$A = \begin{bmatrix} 2 & 2 & -5 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$
 [07]

OR

Q-3 (a) (i) Obtain Row echelon & Reduced row echelon form of the following matrix: [03] $A = \begin{bmatrix} 0 & -1 & 2 & 3 \\ 2 & 3 & 4 & 5 \\ 1 & 3 & -1 & 2 \\ 3 & 2 & 4 & 1 \end{bmatrix}$ (ii) Solve the system of equations : [04] $2x_1 - x_2 + 3x_3 = 0$ $3x_1 + 2x_2 + x_3 = 0$ $x_1 - 4x_2 + 5x_3 = 0$ (b) Find the characteristic roots of the matrix A and verify Cayley-Hamilton theorem for this matrix. Hence find A⁻¹ and also express A⁵ - 4A⁴ - 7A³ + 11A² - A - 10I as

a linear polynomial in A. Where
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$

SECTION - II

- Q-4 (a) State the Cayley-Hamilton Theorem. [01] (b) Evaluate : $\int_{0}^{1} \int_{0}^{x} e^{x} dx dy$ (c) Prove that $\nabla r^{2} = 2\overline{r}$ [02]
 - (d) Find the eigenvalue of A and A⁷, Where $A = \begin{bmatrix} -1 & 1 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & -3 \end{bmatrix}$ [02]

Q-5 (a) (i) Find the constants a, b, c if
$$\overline{F} = (axy + bz^3)i + (3x^2 - cz)j + (3xz^2 - y)k$$
 is [02] irrotational.

(ii) Find the directional derivative of $\phi = e^{2x} \cos yz$ at the origin in the direction of the tangent to the curve $x = a \sin t$, $y = a \cos t$, z = at at $t = \frac{\pi}{4}$. [03]

(b) Evaluate :
$$\int_{C} \left[\left(x^2 - \cosh x \right) dx + \left(y + \sin x \right) dy \right]$$
 by Green's theorem. Where C is the [05]

- rectangle with vertices $(0,0), (\pi,0), (\pi,1)$ and (0,1).
- (c) Evaluate $\iint xy(x+y) dx dy$ over the region bounded by the parabolas [04] $y^2 = x, x^2 = y$

OR

Q-5 (a) (i) Find the constant *a* if
$$\overline{F} = (x+3y^2)i + (2y+2z^2)j + (x^2+az)k$$
 is solenoidal. [02]

(ii) Evaluate :
$$\int_{0}^{1} \int_{0}^{\sqrt{1+x^{2}}} \frac{dx \, dy}{1+x^{2}+y^{2}}$$
[03]

(b) Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$, where $\overline{F} = (2x + y^2)i + (3y - 4x)j$ and C is the triangle in the xyplane with vertices (0,0), (2,0) and (2,1). [05]

(c) Change the order of integration and evaluate
$$\int_{0}^{\infty} \int_{0}^{x} xe^{-\frac{x^2}{y}} dy dx$$
. [04]

Q-6 (a) (i) Express the following matrix as the sum of a symmetric matrix and a skew [03] symmetric matrix: $A = \begin{bmatrix} 3 & -2 & 6 \\ 2 & 7 & -1 \\ 5 & 4 & 0 \end{bmatrix}$ (ii) Investigate for what values of A and μ have (a) no solution (b) a unique [04]

(ii) Investigate for what values of λ and μ have (a) no solution, (b) a unique [04]

26

solution and (c) infinitely many solutions. x + 2y + z = 82x + 2y + 2z = 13 $3x + 4y + \lambda z = \mu$ (b) Find a matrix that diagonalizable and determine $P^{-1}AP$, where $A = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}$ [07] OR Q-6 (a) (i) Prove that matrix A is unitary matrix and hence find A^{-1} , [03] where $A = \begin{bmatrix} \frac{1+i}{2} & \frac{-1+i}{2} \\ \frac{1+i}{2} & \frac{1-i}{2} \end{bmatrix}$ (ii) Find the inverse of the following matrix by elementary transformation: [04] (b) Find a matrix P that diagonalizes $A = \begin{bmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & -1 \\ 2 & 1 & 2 \\ 3 & -2 & 1 & 6 \end{bmatrix}$. Hence find A^{13} . [07] 3 0 1

*****26***14****S